CONTENT

› MC2010 for Concrete Structures
 › What has been achieved?

› MC2020 for Concrete Structures
 › Aspiration and challenge
 › Scope
 › Content proposal

› Organization challenge for fib TG10.1 MC2020
 › Contributors
 › Interactions
 › Target timetable for development of MC2020
EVOLUTION OF FIB MODEL CODES FOR STRUCTURAL CONCRETE

Also pronounced influence on Asian and African Model Codes
MC2010 FOR CONCRETE STRUCTURES

What has been achieved?

- A code, basically, for new and old structures
- Introduction of "conceptual design" to stimulate creativity
- Design with due regard to service life of structures
- First introduction of sustainability
- Improved safety formats for new and existing structures
- Improved constitutive relations for old and new types of concrete, with due attention to durability aspects
- Steel fibres and non-metallic reinforcement as new alternatives for reinforcing concrete structures
- Wide scope of loading types (static, fatigue, impact, explosion, seismic, fire, cryogenic)
- Scientifically based models, with simplified versions for lower level approximations (daily practice)
- Introduction of reliability concepts in numerical analysis
- Introduction of maintenance strategies for through-life care
MC2020 FOR CONCRETE STRUCTURES

Aspiration and challenge

› Single merged structural code based on sound and consistent basic principles
› Including worldwide knowledge with respect to materials and structural behaviour
› Recognizing the needs of engineering communities in different regions of the world
› Developing operational model code oriented towards practical needs
MC2020 FOR CONCRETE STRUCTURES

Aspiration and challenge

Scope and basic principles:

- dealing with new and existing concrete structures, and removing constraints for novel types of materials
- reflecting the importance of sustainability and through-life management of structures
- implementing fundamental principles and a safety philosophy based on reliability concepts
- implementing consistent treatment of safety, serviceability, durability by performance based concepts
New structures and existing structures are not always easy to distinguish (overlap region is very important for engineer's activity)
MODEL CODE 2020: CONTENTS PROPOSAL

<table>
<thead>
<tr>
<th>MC2010 Part I: General</th>
<th>MC2020 Part I: General</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scope</td>
<td>1. Scope</td>
</tr>
<tr>
<td>2. Terminology</td>
<td>2. Terminology</td>
</tr>
<tr>
<td>3. Basic principles</td>
<td>3. Basic principles of design and assessment</td>
</tr>
<tr>
<td>- Performance-based approach principles</td>
<td>- Sustainability perspective</td>
</tr>
<tr>
<td>- Performance requirements for serviceability and structural safety</td>
<td>- Through-life management framework</td>
</tr>
<tr>
<td>- Performance criteria for sustainability</td>
<td>- Performance-based approach principles</td>
</tr>
<tr>
<td>- Life cycle quality management</td>
<td>- Levels-of-Performance approach</td>
</tr>
<tr>
<td></td>
<td>- Reliability principles incl. uncertainty treatment</td>
</tr>
<tr>
<td></td>
<td>- Levels-of-Approximation approach</td>
</tr>
<tr>
<td></td>
<td>- Performance requirements</td>
</tr>
<tr>
<td></td>
<td>- Durable serviceability and structural safety incl. robustness and resiliancy implications, environmental performance, economic performance</td>
</tr>
<tr>
<td></td>
<td>- Quality and Information Management</td>
</tr>
</tbody>
</table>
MC2020 FOR CONCRETE STRUCTURES

Basic principles of design and assessment: Sustainability perspective

- Design of concrete structures should be aimed at creating **reliable** structure with required **durability**, i.e. structure that meets specified demands for **safety** and **serviceability** for a defined number of years in a **sustainable way**
- Attention to resiliency of structures in areas and situations of higher risks

Van Nelle factory
Rotterdam, The Netherlands

1930

2016
MC2020 FOR CONCRETE STRUCTURES

Basic principles of design and assessment: Sustainability perspective

Concrete industry and concrete structures can make a significant contribution to 9 of the 17 UNSDG goals.

United Nations – Resolution 70/1 (25 September 2015) Transforming our world: The 2030 Agenda for Sustainable Development
MC2020 FOR CONCRETE STRUCTURES

- Basic principles of design and assessment: Sustainable Design - Process steps

- Selection of structural design / assessment parameters
- Iterative process
- Social aspects
- Environmental aspects
- Economic aspects
- Conceptual design & execution / assessment
- The ‘three pillars’
- Through-life management
- Select ‘best’ candidate schemes / scenarios

Sustainable decision making: Establish the most suitable scenario / candidate scheme for detailed development

Evaluation structural performance
Evaluation environmental quality
Evaluation economic efficiency
MC2020 FOR CONCRETE STRUCTURES

Basic principles of design and assessment: Through-life management framework

A design service life performance plan for elements of a bridge

<table>
<thead>
<tr>
<th>Design service life years</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations</td>
<td></td>
</tr>
<tr>
<td>Piers and abutments</td>
<td></td>
</tr>
<tr>
<td>Main beams</td>
<td></td>
</tr>
<tr>
<td>Deck slabs</td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td></td>
</tr>
<tr>
<td>Parapets</td>
<td></td>
</tr>
<tr>
<td>Joints</td>
<td></td>
</tr>
<tr>
<td>Waterproofing</td>
<td></td>
</tr>
<tr>
<td>Surfacing</td>
<td></td>
</tr>
<tr>
<td>Sealing</td>
<td></td>
</tr>
<tr>
<td>Drainage</td>
<td></td>
</tr>
</tbody>
</table>

Through-life works
- 15 year upgrade works to waterproofing, surfacing and sealing
- 30 year upgrade works to joints and bearings
- 60 year upgrade works to deck slab, parapets and drainage

Through-life monitoring and evaluation
MC2020 FOR CONCRETE STRUCTURES

Basic principles of design and assessment: Safety philosophy

- Reliability concepts extended and updated to cover new and existing structures, considering risk and reliability differentiation to distinguish between:
 - new and existing structures - where different safety levels are adopted due to economics but with minimum levels due to human safety requirements
 - countries'/regions' specific economic conditions

The target reliability values (β) may be reduced in existing structures compared to the new ones.
MC2020 FOR CONCRETE STRUCTURES

\textbf{Basic principles of design and assessment : Levels of approximation approach}

\textbf{Provisions based on generalized models and level of approximation approach}

\begin{itemize}
 \item \textbf{IV} System assessment of critical existing structures & design of special cases e.g. by FEM
 \item \textbf{III} In-depth elemental evaluation of existing structures & design of special cases
 \item \textbf{II} Typical elemental design & assessment
 \item \textbf{I} Preliminary design & assessment, non governing limit state
\end{itemize}
MODEL CODE 2020: CONTENTS PROPOSAL

<table>
<thead>
<tr>
<th>MC2010 Part I: General</th>
<th>MC2020 Part I: General</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scope</td>
<td>1. Scope</td>
</tr>
<tr>
<td>2. Terminology</td>
<td>2. Terminology</td>
</tr>
<tr>
<td>3. Basic principles</td>
<td>3. Basic principles of design and assessment</td>
</tr>
<tr>
<td>- Performance-based approach principles</td>
<td>- Sustainability perspective</td>
</tr>
<tr>
<td>- Performance requirements for serviceability and structural safety</td>
<td>- Through-life management framework</td>
</tr>
<tr>
<td>- Performance criteria for sustainability</td>
<td>- Performance-based approach principles</td>
</tr>
<tr>
<td>- Life cycle quality management</td>
<td>- Reliability principles incl. uncertainty treatment</td>
</tr>
<tr>
<td></td>
<td>- Levels-of-Approximation approach</td>
</tr>
<tr>
<td></td>
<td>- Performance requirements</td>
</tr>
<tr>
<td></td>
<td>- Durable serviceability and structural safety incl. robustness and resiliency implications, environmental performance, economic performance</td>
</tr>
<tr>
<td></td>
<td>- Quality and Information Management</td>
</tr>
</tbody>
</table>

MC2010 Part I: General

4. Principles of structural design
- Design situations, strategies and methods
- Safety formats

4. Principles and processes
- Design and assessment situations
- Design and assessment strategies
- Design and assessment methods
 - Limit state design principles
 - Safety formats principles
 - Calibration principles
- Formats for compliance check
 - Probabilistic format
 - Partial factor format
 - Global resistance format
 - Deemed-to-satisfy approach
 - Design by avoidance
- Principles of construction
- Principles of conservation
- Principles of dismantlement and reuse
Basic principles of design and assessment: Formats for compliance check

- Provisions based on reliability principles incl. uncertainty treatment
- Taking advantage of information acquired by testing and monitoring

Formats for compliance evaluation

IV Design by avoidance: Low likelihood of failure for particular limiting circumstances / concrete recipes, but not fool proof
II Deemed-to-satisfy approach: Tabulated approach most widely used at present
III Partial factor format: If calibrated, appropriate to standard structures
IV Global resistance format: If calibrated, appropriate to NL-FEM evaluations
IV Probabilistic design: Only realistic for special / monumental structures
5. Materials

<table>
<thead>
<tr>
<th>MC2010 Part II: Design Input Data</th>
<th>MC2020 Part II: Design & Assessment Input Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Materials</td>
<td></td>
</tr>
<tr>
<td>Î Input data for contemporary materials</td>
<td>Input data for contemporary and old materials incl.</td>
</tr>
<tr>
<td>Î concrete,</td>
<td>Î concrete,</td>
</tr>
<tr>
<td>Î reinforcing steel,</td>
<td>Î reinforcing steel,</td>
</tr>
<tr>
<td>Î prestressing steel,</td>
<td>Î prestressing steel,</td>
</tr>
<tr>
<td>Î prestressing systems,</td>
<td>Î prestressing systems,</td>
</tr>
<tr>
<td>Î non-metallic reinforcement,</td>
<td>Î non-metallic reinforcement,</td>
</tr>
<tr>
<td>Î fibres/fibre reinforced concrete</td>
<td>Î fibres/fibre reinforced concrete,</td>
</tr>
<tr>
<td>Î ultra high performance concrete,</td>
<td>Î ultra high performance concrete,</td>
</tr>
<tr>
<td>Î protective materials & systems</td>
<td>Î protective materials & systems</td>
</tr>
<tr>
<td>Î Input data for other forms of construction</td>
<td></td>
</tr>
<tr>
<td>Î Input data for material damage and deterioration</td>
<td></td>
</tr>
</tbody>
</table>
MC2020 FOR CONCRETE STRUCTURES

- **Design & Assessment Input Data: Concrete**
 - Scope definition and range of applicability:
 - conventional materials, old, novel and deteriorating materials incl. materials for interventions (repair mortars etc.)
 - Assessment of concrete properties
 - assumptions for design and assessment
 - Taking advantage of information acquired by testing and monitoring
 - tests methods to enable defined performance material design
 - evaluation framework
 - Provisions for quality control
MC2020 FOR CONCRETE STRUCTURES

› Design & Assessment Input Data: Concrete : ranges of Model Code's applicability

<table>
<thead>
<tr>
<th>Criterion</th>
<th>MC 1990</th>
<th>MC 2010</th>
<th>MC 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>concrete strength</td>
<td>20 ... 60 (90) MPa normal strength</td>
<td>20 ... 130 MPa normal strength</td>
<td>20 ... 130 MPa normal strength</td>
</tr>
<tr>
<td>concrete type</td>
<td>normal strength</td>
<td>high strength</td>
<td>high strength</td>
</tr>
<tr>
<td></td>
<td>lightweight (10 ... 90 MPa)</td>
<td>self-compacting</td>
<td>lightweight (10 ... 90 MPa)</td>
</tr>
<tr>
<td></td>
<td>green (eco-concrete)</td>
<td></td>
<td>self-compacting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concretes comply largely</td>
<td>green (eco-concrete)</td>
</tr>
<tr>
<td></td>
<td>with the provisions of</td>
<td>with the provisions of</td>
<td>UHPC (.... 250 MPa)</td>
</tr>
<tr>
<td></td>
<td>EC2 and EN 206, resp.</td>
<td>EN 206, resp.</td>
<td>intervention materials</td>
</tr>
<tr>
<td>concretes</td>
<td></td>
<td></td>
<td>old concrete</td>
</tr>
<tr>
<td>concrete loads</td>
<td>different ranges of applicability, depending on the related load (static, impact etc.); temperature range: mainly 0 ° C < T < 80 ° C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tailor-made concrete</td>
<td></td>
<td>reference to test standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or recommendations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MC2020 FOR CONCRETE STRUCTURES

Design & Assessment Input Data: New concepts and approaches for Concrete

Summary of crucial points

- New types of green concretes, go beyond provisions of CEN (new binders, low binder content, new types of aggregate, …) models are not available
 conventional strength-based concepts / models cannot be applied!
 performance-based modelling is required (testing is mandatory)

- Complex aging effects, depending on the sustained stress level and environmental actions, have to be considered (re-design of existing structures)

- Models upgrading → improvement using today’s better knowledge
 → improvement by integration with performance testing
 → interactions and coupled effects to be considered
MC2020 FOR CONCRETE STRUCTURES

Design & Assessment Input Data: Classification of concrete with respect to modelling

- Concrete type
 - Conventional concrete: NSC, HSC
 - new
 - old
 - Non-conventional concrete
 - UHPC
 - ECO
 - other

- Model basis
 - strength (grade)
 - strength (grade) and / or performance

- Validity ranges of strength-based models
 - binder
 - c [kg/m³]
 - w/c
 - aggregates
 - additions
 - admixtures

 CEM I
 CEM II
 CEM III or similar

 350 ± 150
 0.50 ± 0.20

 normal/LWA sand/gravel acc. to NS, CEN or ISO

 type, amount acc. to NS, CEN or ISO

 type, amount acc. to NS, CEN or ISO

Alternative: Make reference to EN 206 (or ACI, or Japanese code, or …)
MC2020 FOR CONCRETE STRUCTURES

- **Improved material & mechanical models for assessment of ‘actual’ capacity**
 - **Performance-based design**
 - Ability of a structure to fulfil the performance requirements for the designed service life at required probability level
 - **Limit state concepts**
 - Transition between the desired state and the adverse state
 - Incorporation of deterioration effects reducing structural resistance $R(t)$
 - Increase in load effect $S(t)$ with time
 - Recognition of resistance effects not typically accounted for in design (e.g. compressive membrane action)

Decrease in structural resistance $R(t)$ with time & increase in the load effect $S(t)$ with time

Benefit of unaccounted behaviours upon structural resistance and on actual service life (Illustrative only)
MC2020 FOR CONCRETE STRUCTURES

› Design & Assessment Input Data: Reinforcing steel
 Prestressing steel
 Prestressing systems

› Scope definition and range of applicability:
 › include old reinforcing materials and systems, corrosion resistant reinforcement

› Assessment of material and system properties
 › effect of deterioration on the properties of reinforcing steel & prestressing steel
 › behaviour of reinforcing steel after cooling
 › time dependent losses for old materials

› Taking advantage of information acquired by testing and monitoring
 › evaluation framework for assessment
 › situ measuring techniques to determine present prestressing level
MC2020 FOR CONCRETE STRUCTURES

- **Design & Assessment Input Data: Non-metallic reinforcement**

 - **Scope definition and range of applicability:**
 - include FRP rebars and externally applied reinforcement, include textile reinforcement

 - **Assessment of material properties**
 - properties related to durability of non-metallic reinforcement

 - **Design and execution guidance**
 - Include assumptions used for design incl. stochastic approach and treatment/determination of safety factors
MC2020 FOR CONCRETE STRUCTURES

- **Design & Assessment Input Data: Fibres/Fibre Reinforced Concrete**

 - **Scope definition and range of applicability:**
 - include UHPFRC (consistent design recommendations for all FRC's)

 - **Assessment of properties of fibre reinforced concrete**
 - taking advantage of information acquired by testing and monitoring
 - test methods for the determination of FRC properties
 - durability of steel fibres in concrete
 - constitutive laws incl. creep and fatigue

 - **Behaviour in shear without conventional reinforcement**
 (incorporation in shear model for ordinary RC)
6. Interface characteristics

<table>
<thead>
<tr>
<th>MC2010 Part II: Design Input Data</th>
<th>MC2020 Part II: Design & Assessment Input Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input data for contemporary materials</td>
<td>Input data for contemporary and old materials</td>
</tr>
<tr>
<td>bond of embedded steel reinforcement</td>
<td>bond of embedded steel reinforcement</td>
</tr>
<tr>
<td>bond of non-metallic reinforcement</td>
<td>bond of prestressing rebars</td>
</tr>
<tr>
<td>concrete to concrete</td>
<td>bond of embedded non-metallic reinforcement</td>
</tr>
<tr>
<td>concrete to steel</td>
<td>bond of externally bonded non-metallic reinforcement</td>
</tr>
<tr>
<td>bond of externally bonded non-metallic reinforcement</td>
<td>bond of externally bonded steel</td>
</tr>
<tr>
<td>bond of corroded steel reinforcement</td>
<td>concrete to concrete</td>
</tr>
<tr>
<td>bond of externally bonded steel</td>
<td>concrete to steel</td>
</tr>
<tr>
<td>bond of externally bonded non-metallic reinforcement</td>
<td>Input data for other forms of construction</td>
</tr>
<tr>
<td>Input data for material damage and deterioration</td>
<td>Input data for material damage and deterioration</td>
</tr>
<tr>
<td>bond of corroded steel reinforcement</td>
<td></td>
</tr>
</tbody>
</table>
Design & Assessment Input Data: Bond of embedded steel reinforcement
Bond of prestressing rebars
Bond of non-metallic reinforcement

Scope definition and range of applicability:
- bond provisions for existing structures and structures under severe conditions
 - bond of old and of new materials, bond of post-installed rebars, bond of externally applied reinforcement
 - effect of deterioration on bond
 - bond in case of repair action
 - bond in seismic joints of existing and new structures
 - interaction of bond-corrosion-fatigue
 - long term performance
- Performance specifications for laps and anchorages
 - attention for simplified provisions (level of approximation)
Design & Assessment Input Data: Concrete to concrete
Concrete to steel

Scope definition and range of applicability:
- include new material for interventions
- interaction of new concrete to old concrete
- include mechanical interlock not fulfilling current provisions
Design and assessment procedures

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Design procedure</td>
<td>7. Design and assessment procedures</td>
</tr>
<tr>
<td>Â Conceptual design</td>
<td>Â Conceptual approach to design and assessment</td>
</tr>
<tr>
<td>Â Structural analysis and dimensioning</td>
<td>Â Structural analysis and dimensioning</td>
</tr>
<tr>
<td>Â Design verification</td>
<td>Â Design, assessment & re-design verification incl.</td>
</tr>
<tr>
<td>Â Detailing incl. fastenings</td>
<td>Â verification assisted by models</td>
</tr>
<tr>
<td></td>
<td>Â verifications assisted by numerical simulations</td>
</tr>
<tr>
<td></td>
<td>Â verification assisted by monitoring and testing</td>
</tr>
<tr>
<td></td>
<td>Â Detailing incl. fastenings</td>
</tr>
<tr>
<td></td>
<td>Â Verification of effectiveness of measures and interventions</td>
</tr>
</tbody>
</table>
MC2020 FOR CONCRETE STRUCTURES

› Design & Assessment Procedures: Conceptual approach to design and assessment

› Scope definition:
 ‣ consider implications of conceptual approach for assessment,
 ‣ Treatment of sustainability and through-life care
 ‣ Strategies for design and assessment (incl. reasoning in applying surveys, testing and monitoring) and consequences of those for verification strategies
Verification is necessary for all the performance requirements
Verification is necessary for entire period of service life.
 • Verification of limit states associated with durability should cover in adequate way design of both new and existing structures with damages.
 • In case of existing structures appropriate methods should be included for verification of performance requirements for remaining period of service life, such as methods considering deterioration of materials.
Verification methods are recommended, however other methods may be adopted if approved appropriate by authority / client.
MC2020 FOR CONCRETE STRUCTURES

Design and assessment procedures: Shear and Punching

- Improved models for shear and punching:
 - Differentiation of shear level I-III models for different types of structures
 - Shear capacity of circular cross-sections
 - Influence of fatigue in shear and punching behaviour
 - Implementation of compressive membrane action in punching resistance
 - Influence of type of steel (A, B, C, D), plain or ribbed on shear behavior, old types of reinforcement, alternative types of concrete, deteriorated materials
 - Effect of insufficient reinforcement
 - Shear resistance models in presence of external prestressing

- Verification methods need to be generalized to accommodate not only steel reinforcement but also non-metallic reinforcement, steel fibre reinforcement as far as appropriate
MC2020 FOR CONCRETE STRUCTURES

› Design and assessment procedures: Fatigue
 Impact and explosion
 Seismic

› Fatigue strength (life) of members subjected to shear: shear strength beam without shear reinforcement, shear strength of slab, shear strength of beam with shear reinforcement, effect of travelling loads, effect of moisture, effect of freeze/thaw cycles
› Fatigue in combination with corrosion
› Fatigue for new materials
› Seismic design and assessment incl. seismic retrofitting
› Seismic resistance of precast concrete structures
› Design for resilience
MC2020 FOR CONCRETE STRUCTURES

› Design and assessment procedures : Fire

 Cryogenic conditions

› Scope definition :

 › Include non-metallic reinforcement and new cementitious materials
 › Include post-fire assessment and repair after fire
MC2020 FOR CONCRETE STRUCTURES

Design and assessment procedures: Serviceability

Scope definition:
- Include non-metallic reinforcement
- Include new cementitious materials
- Include members with externally applied reinforcement, jacket and external cable
- Include intervention cases (such as crack width formula for overlaying with cementitious material)

Verification of current models with “real field” data
- Reconsideration of the role of crack width with regard to durability
- Relationship between surface crack opening along the bars by effect of corrosion and percentage of area reduction in reinforcement
- Evolution of crack opening under fatigue with and without corrosion
MC2010 FOR CONCRETE STRUCTURES

Design & Assessment Input Data: Durability and Service Life

- to achieve the intended design service-life of structure
- to facilitate an extension of life / change of use of structure
- to minimise through-life cost and environmental impacts
MC2020 FOR CONCRETE STRUCTURES

Design & Assessment Input Data: Durability and Service Life Prediction

- Change approach from design by avoidance (proxi limit states criteria) to evaluation or design for (residual) life time (new limit state criteria)
- Introduce of new limit state concept for existing structures with damages beyond limit state of new structures, which can be based on structural performance rather than material condition
- Introduce propagation models (need for models or tests with reproducible results) including the effects of interventions
- Introduce evaluation of reliability and durability for deteriorating structures
- Include updating of reliability and durability for deteriorating structures by use of information from in-situ testing and monitoring
- Include durability assessment after intervention / repair

- Extension of models for durability to various forms of deterioration
 - carbonation-induced corrosion
 - chloride-induced corrosion
 - freeze-thaw attack
 - acid attack
 - sulphate attack
 - ...
MC2020 FOR CONCRETE STRUCTURES

- Design and assessment procedures: Robustness
 - Clear definition of the concept of robustness and its limitations
 - Introduction of redundancy as a design criterion
 - Difference between assessment and design
MC2020 FOR CONCRETE STRUCTURES

- **Design and assessment procedures: NL-FEM**
 - Improved compliance check formats for NL-FEM:
 - Reliability of NL-FEM calculations
 - Model uncertainties to be used in NLFEM based reliability analyses
 - Extended scope of application: static and non-static (seismic, dynamic) conditions
 - Refined models for analysis of damaged structures and account for progressive deterioration processes
 - Numerical simulation for structures after intervention and/or with special structural details / special materials
 - Consider development of tailor-made NLFEM programs
 - Consider qualification of designer for NL FEM
MC2020 FOR CONCRETE STRUCTURES

Design and assessment procedures: Sustainability verification

Scope:
- Impact on environment
- Impact on economy
- Impact on society

Include effect of avoiding replacement or reduction of interventions

Show concept to seek for best scenario for sustainability (saving resources and energy) through-life maintenance management
MC2020 FOR CONCRETE STRUCTURES

Design and assessment procedures: Verification assisted by monitoring and testing

- Improve the quality and safety of any construction and extend its useful life
- Create an infrastructure risk-assessment and diagnostics solution to optimise maintenance.
- Monitor in real time the safety of any structure, from time of construction to end-of-life.
- Support the Civil Engineering community by supplying advanced diagnostics tools to increase their productivity and the quality of their work.
MC2020 FOR CONCRETE STRUCTURES

Design and assessment procedures: Verification assisted by monitoring and testing

- Monitoring of durability and performance
 - Locations for surveys, testing and monitoring activities
 - Condition survey and monitoring activities
 - Tools and techniques for surveys and monitoring
 - Gathering data for condition control purposes
 - General flow of condition survey process
 - Automated monitoring of concrete structures
 - Automated monitoring and updating of service life prediction
- Data evaluation and incorporation of a priori knowledge
- Consideration of past performance as evidence of suitability for future performance
- Provisions for proof loading of structures
- Monitoring systems related to service life

Improve the role of monitoring and enhance the value of information in the life-cycle management of concrete structures & decision making
MC2020 FOR CONCRETE STRUCTURES

Design and assessment procedures: Detailing

Fastenings

- Improved background for detailing provisions and provide more rational detailing models

Scope extension:
- structures after intervention and/or with special structural details / special materials
- detailing of connections between new concrete and old concrete
- behaviour and strength of badly detailed existing structures
- provisions for fastening not fulfilling current provisions
- fastening for external bonded reinforcement and overlay
MC2020 FOR CONCRETE STRUCTURES

- Design and assessment procedures: Effectiveness of measures and interventions
 - Consider adding new section (unless this aspects are covered by other sections)

<table>
<thead>
<tr>
<th>Remedy</th>
<th>Examples of Repair Strategies & Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection against ingress</td>
<td></td>
</tr>
<tr>
<td>Moisture control</td>
<td></td>
</tr>
<tr>
<td>Concrete restoration</td>
<td></td>
</tr>
<tr>
<td>Increased physical resistance</td>
<td></td>
</tr>
<tr>
<td>Increased resistance to chemical attack</td>
<td></td>
</tr>
<tr>
<td>Preserve or restore passivity</td>
<td></td>
</tr>
<tr>
<td>Increase resistivity</td>
<td></td>
</tr>
<tr>
<td>Cathodic control</td>
<td></td>
</tr>
<tr>
<td>Cathodic protection / prevention</td>
<td></td>
</tr>
<tr>
<td>Control of anodic areas</td>
<td></td>
</tr>
<tr>
<td>Structural strengthening</td>
<td></td>
</tr>
<tr>
<td>Adding new systems / devices for controlling</td>
<td></td>
</tr>
<tr>
<td>structural response</td>
<td></td>
</tr>
</tbody>
</table>

For details refer to Table 1 in paper
MODEL CODE 2020: CONTENTS PROPOSAL

<table>
<thead>
<tr>
<th>MC2010 Part IV: Construction</th>
<th>MC2020 Part IV: Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Construction</td>
<td>8. Construction</td>
</tr>
<tr>
<td>Â New works</td>
<td>Â New works</td>
</tr>
<tr>
<td>Â Execution management</td>
<td>Â Execution management of new works</td>
</tr>
<tr>
<td>Â Reinforcing steel works</td>
<td>Â Reinforcing steel works</td>
</tr>
<tr>
<td>Â Prestressing works</td>
<td>Â Prestressing works</td>
</tr>
<tr>
<td>Â Non-metallic reinforcement</td>
<td>Â Non-metallic reinforcement</td>
</tr>
<tr>
<td>Â Falsework and formwork</td>
<td>Â Works on existing structures</td>
</tr>
<tr>
<td></td>
<td>Â Execution management of works on existing structures</td>
</tr>
<tr>
<td></td>
<td>Â Execution of interventions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Â Provisions for condition assessment , evaluation, decision-making & interventions</td>
<td>Â Use and conservation by through-life management</td>
</tr>
<tr>
<td>Â Conservation by interventions (physical works)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MC2010 Part VI: Dismantlement</th>
<th>MC2020 Part VI: Dismantlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Dismantlement</td>
<td>10. Dismantlement</td>
</tr>
<tr>
<td></td>
<td>11. Recycle and reuse</td>
</tr>
</tbody>
</table>
MC2020 FOR CONCRETE STRUCTURES

Construction: New works

Works on existing structures

Scope

- include maintenance and interventions
- include post casting treatments
- include provision for FRC & UHPC, new cementitious materials
- consider implications of BIM and relation with Quality and Information Management

- Reference to ISO Execution Standard as far as appropriate
MC2020 FOR CONCRETE STRUCTURES

Through-life management & care

Scope

- Cover conservation of new and existing structures as well as structures after interventions

- Elaborate on decision making processes for management and interventions and on how to deal with the effect of (phased) execution of interventions on the structural behaviour and service life expectation

- Design and construction of intervention should be referred in corresponding chapters for Design and Construction
MC2020 FOR CONCRETE STRUCTURES

Dismantlement: Dismantlement
Repurposing, reuse and recycle

Scope

Include safety level / safety management for dismantling
Elaborate structural aspects of dismantlement (dismantlement of parts, dismantlement of prestressed structures, repair of accidently cut tendons)
Include reflective thinking approach / review of proposed dismantlement concept and approach
ORGANIZATION CHALLENGE FOR fib MC2020

- Effective ways of working on MC2020
 - Engage all COMs and TGs and involve all national fib groups in preparing technical content for MC2020 / establish co-ordination mechanisms,
 - Seek improved ways of working, including target (web-) workshops/meetings and joint events with international organisations on specific issues,
 - Deliver (background) documents to enable continuous dissemination of the up-to-date results to other bodies, that wish to adapt the fib MC2020 concept and provide for timely feedback in the final stage of harmonization of MC2020,
 - Seek improved ways for delivering MC2020 and for maintaining / developing knowledge through novel dissemination processes.
MC2020 CONTENTS REVIEW AND DISCUSSION

- Identification of the content
- Identification of the contributors
- Identification of the interactions

AIM
- Updating contents
- Formulating delivery plan
- Establishing liaisons & Action Groups
- Delivering draft provisions and background documents
- Creating consensus and harmonizing concepts
ENCOURAGING GLOBAL INVOLVEMENT & CONTRIBUTIONS TO MC2020
TARGET TIMETABLE FOR DEVELOPMENT OF MC2020

- Step 1: Author drafts of MC2020 text passed to TG10.1 Technical Secretariat for harmonisation:
 - By mid- to late-2020, some contributions will be finished in early 2020

- Step 2: Harmonisation by TG10.1 Technical Secretariat and Editorial Group to produce fib Bulletin of draft MC2020 - for Public Review:
 - Late-2020 to mid-2021 (perhaps for fib Symposium in Lisbon, June 2021)
Update on the journey to fib MC2020

Introduction

Discussions during 2014 and 2015 on potential ways of advancing the fib Model Code for Concrete Structures resulted in a worldwide meeting in The Hague in the Netherlands in June 2015. The fib MC2020 Core Group in December 2015 was established that there is a need for a single structural code dealing with both new construction and existing concrete structures, and all the activities encompassing them. This work started in 2014, but the fib Model Code for Concrete Structures which includes major recommendations that its Committee 10 should be revised to be updated and have a permanent status. The fib Model Code Committee was therefore established and the fib Model Code Committee was established.

Since its inauguration fib Task Group 18 on fib MC2020 was circumscribed the first meeting of Commission 15 held in Luxembourg, Switzerland in June 2016. The Task Group 18 on fib MC2020 was held in the Netherlands December 2016, 2 days in Melbourne, Australia during December 2017, 2 days in Melbourne, Australia and Karlsruhe, Germany (December 2018, 2 days).

FUTURE UPDATES / REPORTS ON MC2020 PROGRESS CIRCULATED VIA VARIOUS ROUTES, WEBSITE, ETC
THANK YOU FOR YOUR ATTENTION