

Life-time performance prediction

Influence of inspection/monitoring on life-time performance prediction

Updating using different sources of information

Updating using different sources of information

KU LEUVEN

Bayesian updating based on large-scale load testing

- Textile factory 'Union Cottonière' in Ghent constructed in 1947-1948 (design by Gustave Magnel)
- Beams of the flat roof are in prestressed concrete, cast on the ground and lifted into position.
- **Primary beams** have a **nominal span of 20.5 m** supported on concrete corbels which are monolithically attached to the columns
- Secondary beams have a nominal span of 13.7 m supported by corbels of the primary beam
- No other reinforcement except for some stirrups in the anchor blocks

Static load testing Primary beam

Botte, W., Vereecken, E., Taerwe, L., & Caspeele, R. (2021). Assessment of posttensioned concrete beams from the 1940s: large-scale load testing, numerical analysis and Bayesian assessment of prestressing losses. Structural Concrete, 22(3), 1500-1522.

Static Load testing

Numerical modelling

Validation of a numerical model based on the measured data (loads, displacements, crack pattern, etc.)

Botte, W., Vereecken, E., Taerwe, L., & Caspeele, R. (2021). Assessment of posttensioned concrete beams from the 1940s: large-scale load testing, numerical analysis and Bayesian assessment of prestressing losses. Structural Concrete, 22(3), 1500-1522.

Direct Bayesian updating of measurement data

- Stepwise Bayesian updating framework supported by non-linear FE analyses for the assessment of the remaining prestress + associated uncertainties:
 - STEP 1: Bayesian updating of material properties

Prior distributions:

- Historical documents
- Literature data

 (e.g. JCSS Probabilistic

 Model Code)

Direct measurements of:

- Concrete tensile strength
- Young's modulus of concrete
- Concrete density
- Young's modulus of steel
- Steel yield strength

Posterior distributions:
Bayesian updating through analytical expression/numerical tools

	\overline{x}'_{lnX}	n'	s'_{lnX}	u'
C35 – Concrete for precast elements	3.95	2.5	0.08	4.5
•	$\overline{x}^{\prime\prime}_{lnX}$	n''	s''_{lnX}	$oldsymbol{ u}^{\prime\prime}$
Posterior hyperparameters	3.79	5.5	0.097	7.5

Botte, W., Vereecken, E., Taerwe, L., & Caspeele, R. (2021). Assessment of posttensioned concrete beams from the 1940s: large-scale load testing, numerical analysis and Bayesian assessment of prestressing losses. Structural Concrete, 22(3), 1500-1522.

Bayesian updating using indirect load test data

- Stepwise Bayesian updating framework supported by non-linear FE analyses for the assessment of the remaining prestress + associated uncertainties:
 - STEP 1: Bayesian updating of material properties
 - STEP 2: Update prestress level using numerical model and updated material properties

Botte, W., Vereecken, E., Taerwe, L., & Caspeele, R. (2021). Assessment of posttensioned concrete beams from the 1940s: large-scale load testing, numerical analysis and Bayesian assessment of prestressing losses. Structural Concrete, 22(3), 1500-1522.

Updating using different sources of information

Including visual observations

Observation of rust stains

- → Corrosion has already initiated
- \rightarrow Influences distribution of initiation period T_i

Without visual observations

With visual observations

Initiation period

UNIVERSITEIT GENT

Vereecken, E., Botte, W., Lombaert, G., & Caspeele, R. (2022). A Bayesian inference approach for the updating of spatially distributed corrosion model parameters based on heterogeneous measurement data. Structure and Infrastructure Engineering, 18(1), 30-46

Application: corroded RC beam (lab)

<u>Ref:</u> C. Martens, W. Botte, R. Caspeele & E. Verstrynge, Proof-of-Concept of a Bayesian Updating Approach for Corrosion Degrees on the Basis of Crack Measurements, Proc. fib symposium 2024, 11-13 November 2024, Christchurch, New Zealand. (in review)

- Visual inspections
- Crack width measurements
- Prior assumptions (engineering expertise, ...)

Bayesian Updating Based on Crack Width (II)

Application: corroded RC beam (lab)

- Integration of correlation length ho_{CL} and random field modelling
- Application of Bayesian updating (prior MCMC posterior) through crack width – corrosion model

Result: Spatial prediction of the corrosion degree for each subelement of the RC beam, incorporating relevant uncertainties.

Updating using different sources of information

From the lab to the real world...

- Local and global inspection/monitoring techniques are successfully applied in lab conditions
- The transition from lab conditions to real-life cases studies comes with additional uncertainties related to:
 - Structural health
 - Boundary conditions
 - Material characteristics
 - Geometry
 - Environmental conditions
 - ...
- Uncertainties are accounted for by combining different types of information
 - Design drawings
 - Structural and damage modelling
 - Historical reports
 - Inspections & monitoring

The case of the W20 bridge

Inspection and monitoring

- Visual inspections
- Crack measurements (widths and lengths)
- Sclerometric measurements
- Potential measurements
- Corrosion rate measurements
- Core drilling for carbonatation depths, chloride content, ...
- Global tests and monitoring
 - Static load test in 1957, measuring displacements and rotations
 - Static load test in 2023, measuring displacements and strains
 - Continuous quasi-static strain measurements
 - Continuous dynamic measurements

Optical fiber monitoring

IoT platform

Buildwise ★ Home w20_newdashboard w20_newdashboard ▼ Entities Realtime - last 7 days ⟨···⟩ Rule chains Overview Welcome W20 IoT platform Data converters → Integrations Instructions Data is temperature Roles · Click on any variable name to hide/show corrected. · Select the time period in top right Customers hierarchy Click here to show Contact: Rutger. Vrijdaghs@buildwise.be uncorrected data User groups Disclaimer, follow-up and suggestions via this link Customer groups all All Delta deflection estimation Deflection estimation **a** :: 6 customer BBRI Beam B (avg) Beam B (avg) 36.25 -0.21 15.34 31.6 -20.12 -3.86 intern BBRI 7.89 21.87 -29.05 -15.06 1.65 -33.99 Asset groups -0.43 Device groups -22.22 -6.12 -18.02 -1.6 Device profiles Entity view groups Mid-span bottom strains Midspan beam B&H **6** :: 6 Widgets Library max -32.17 Beam B_A tens -152.96 -32.17 Dashboard groups -57.16 52.27 123.45 () Scheduler -15.95 78.12 10.17 White Labeling 54.08 116.48 72.69 142.15 Beam H A comp 125.51 177.96 78.12 (d) Audit Logs May 21 II. Api Usage

Last 5 minutes to last month

Live deflection and strain updates

Raw data export

To be extended with early-warning system based on threshold values for PI's

Modelling

- 3D finite element model of the bridge is constructed
 - Geometry based on initial design drawings
 - Combination of beam elements and plate elements
 - Inclusion of rotational springs at the boundaries and at locations of internal hinges

Load test 1957

- Loading: 8 trucks (167t) and known axle loads
- Deflection measurements at 13 locations (measurement accuracy: 0,05mm)
- Simulations with boundary conditions according to the design
- Good agreement between measurements and simulations

Location	Measurement [mm]	i	Simulation [mm]	
1	-0,2		-0,4	
2	-0,2		-0,3	
3	8,3		7,7	
4	7,8		7,3	
5	9,7		9,9	
6	11,2	≈	11,3	
7	11,7		11,6	
8	11,0		11,1	
9	9,5		9,5	
10	8,2		8,0	
11	8,0		7,7	
12	-0,2		-0,4	
13	-0,2		-0,4	
	05/06/202	24		23

Load test 1957

- Loading: 8 trucks (167t) and known axle loads
- Rotation measurements at 12 locations (measurement accuracy: 20 μm/rad)
- Simulations with boundary conditions according to the design
- Good agreement between measurements and simulations

Location	Measurement $[\mu m/rad]$		Simulation [µm/rad]	
1	-30		0	
2	-45		0	
3	-25		-40	
4	-15		-80	
5	1400		1430	
6	1410	\approx	1370	
7	-1510		-1500	
8	-1495		-1450	
9	30		40	
10	25		40	
11	30		0	
12	0		0	

Load test 2023

- Loading: 2 trucks (50t) and known axle loads
- Deflection measurements at 22 locations
- Simulations with boundary conditions according to the design
- Overestimation of the displacements

PARAPICAL PROPERTY OF THE PARAPICAL PROPERTY
--

Location	Measuremen [mm]	t	Simulation [mm]	
1	0,8		1,4	
2	1,5		2,1	
3	1,4		2,3	
4	2,7	≠	3,5	
5	1,6		2,7	
6	3,0		4,1	
7	1,4		2,4	
8	2,7		3,4	
9	0,9		1,5	
10	1,7		2,0	

Vibration-based monitoring

- Reference dynamic measurements using 12 accelerometers measuring accelerations in three directions
- 6 different set-ups with 45 measurement locations

Vibration-based monitoring

- 6 identified modes in frequency range between 0 20 Hz
- Overestimation of the natural frequencies, which (again) relates to an underestimaton of the stiffness

Nr.	$f_{ m id}$ [Hz]		$f_{ m sim}$ [Hz]	
1	4,71	,	3,52	
2	5,83		4,67	
3	9,66		9,30	
4	14,70	#	13,96	
5	16,33		14,29	
6	17,54		17,00	

Menno van de Velde - KU Leuven

Bayesian updating

- Both displacement measurements and natural frequencies indicate an underestimation of the stiffness in 2023/2024 when compared to 1957
- The structural stiffness in this period might have changed due to several factors
 - Ageing and hardening of the concrete
 - Deterioration of the steel and concrete
 - Changing boundary conditions
 - (Temperature)
- FE model of the bridge is updated based on different global measurement data
- Updated parameters: Young's moduli of the beams and stiffness of the rotational springs

Future work

Posterior distribution

New state of knowledge

Prior distribution

Vague or informative prior; can incorporate data from previous assessments

Likelihood

Accounts for measurement data, model uncertainties, expert knowledge, ...

ENABLES TO COMBINE SOURCES OF INFORMATION

The power of combining information

Vereecken, E., Botte, W., Lombaert, G., & Caspeele, R. (2022). A Bayesian inference approach for the updating of spatially distributed corrosion model parameters based on heterogeneous measurement data. Structure and Infrastructure Engineering, 18(1), 30-46

The power of combining information

